课程名称: 化工原理(上)

授课班级: 酿酒 2016 级 1、2、3 班

任课教师: 马燮

工作部门: 化工学院

联系方式: 13990050602

四川理工学院 制 2018 年 8 月

《化工原理》(上)课程实施大纲

基本信息

课程代码:

课程名称: 化工原理(上)

学 分: 3.5

总 学 时: 56

学 期: 18-19 学年第 1 学期

上课时间:周一9、10节、周二1、2节

上课地点: LA4-103

答疑时间和方式:电话、课间、QQ群

答疑地点:实验2楼215

授课班级: 酿酒 2016 级 1、2、3

任课教师:马燮

学 院: 化工学院

邮 箱: maxie@suse.edu.cn

联系电话: 13990050602

目 录

1.	教学理念1
2.	课程介绍1
3.	教师简介2
	3.1 教师的职称、学历
	3.2 教育背景2
	3.3 研究兴趣(方向)2
4.	先修课程2
5.	课程目标2
6.	课程内容2
	6.1 课程的内容概要2
	6.1.1 绪论3
	6.1.2 第一章 流体流动3
	6.1.3 第二章 流体输送机械4
	6.1.4 第三章 非均相物系的分离和固体流态化4
	6.1.5 第四章 传热5
	6.2 教学重点、难点5
	6.2.1 绪论5
	6.2.2 第一章 流体流动5
	6.2.3 第二章 流体输送机械5
	6.2.4 第三章 非均相物系的分离和固体流态化6
	6.2.5 第四章 传热6
	6.3 学时安排6
	6.3.1 绪论6
	6.3.2 第一章 流体流动6
	6.3.3 第二章 流体输送机械6
	6.3.4 第三章 机械分离和固体颗粒流态化7
	6.3.5 第四章 传热7
7.	果程实施 7

i

7.1 教学单	单元一:绪论7
7.1.1 教皇	学日期7
7. 1. 2	教学目标7
7. 1. 3	教学内容(含重点、难点)8
7. 1. 4	教学过程8
7. 1. 5	教学方法8
7. 1. 6	作业安排及课后反思8
7. 1. 7	课前准备情况及其他相关特殊要求8
7.2 教学单	单元二: 第一章 流体流动9
7.2.1 教旨	学日期9
7. 2. 2	教学目标9
7. 2. 3	教学内容(含重点、难点)9
7. 2. 4	教学过程9
7. 2. 5	教学方法10
7. 2. 6	作业安排及课后反思10
7. 2. 7	课前准备情况及其他相关特殊要求10
7.3 教学单	单元三: 第一章 流体流动10
7. 3. 1	教学日期10
7. 3. 2	教学目标10
7. 3. 3	教学内容(含重点、难点)11
7. 3. 4	教学过程11
7. 3. 5	教学方法11
7. 3. 6	作业安排及课后反思12
7. 3. 7	课前准备情况及其他相关特殊要求12
7.4 教学单	单元四: 第一章 流体流动12
7. 4. 1	教学日期12
7. 4. 2	教学目标12
7. 4. 3	教学内容(含重点、难点)12
7. 4. 4	教学过程12
7. 4. 5	教学方法

7.4.6 作业安排及课后反思	13
7.4.7课前准备情况及其他相关特殊要求	13
7.5 教学单元五:第一章 流体流动	14
7. 5. 1 教学日期	14
7. 5. 2 教学目标	14
7.5.3 教学内容(含重点、难点)	14
7. 5. 4 教学过程	14
7. 5. 5 教学方法	14
7. 5. 6 作业安排及课后反思	15
7.5.7课前准备情况及其他相关特殊要求	15
7.6 教学单元六:第一章 流体流动	15
7. 6. 1 教学日期	15
7. 6. 2 教学目标	15
7.6.3 教学内容(含重点、难点)	15
7. 6. 4 教学过程	15
7. 6. 5 教学方法	16
7.6.6作业安排及课后反思	16
7.6.7课前准备情况及其他相关特殊要求	16
7.7 教学单元七:第一章 流体流动	17
7.7.1 教学日期	17
7.7.2 教学目标	17
7.7.3 教学内容(含重点、难点)	17
7.7.4 教学过程	17
7.7.5 教学方法	18
7.7.6作业安排及课后反思	18
7.7.7课前准备情况及其他相关特殊要求	18
7.8 教学单元八:第一章 流体流动	19
7.8.1 教学日期	19
7.8.2 教学目标	19
7.8.3 教学内容(含重点、难点)	19

7.8.4 教学过程	19
7.8.5 教学方法	20
7.8.6 作业安排及课后反思	20
7.8.7课前准备情况及其他相关特殊要求	20
7.9 教学单元九: 第一章 流体流动	21
7.9.1 教学日期	21
7.9.2 教学目标	21
7.9.3 教学内容(含重点、难点)	21
7.9.4 教学过程	21
7.9.5 教学方法	21
7.9.6 作业安排及课后反思	22
7.9.7课前准备情况及其他相关特殊要求	22
7.10 教学单元十: 第一章 流体流动	22
7.10.1 教学日期	22
7.10.2 教学目标	22
7.10.3 教学内容(含重点、难点)	22
7.10.4 教学过程	22
7.10.5 教学方法	23
7.10.6 作业安排及课后反思	23
7.10.7课前准备情况及其他相关特殊要求	23
7.11 教学单元十一: 第二章 流体输送设备	23
7.11.1 教学日期	23
7.11.2 教学目标	23
7.11.3 教学内容(含重点、难点)	23
7.11.4 教学过程	24
7.11.5 教学方法	25
7.11.6 作业安排及课后反思	25
7.11.7课前准备情况及其他相关特殊要求	25
7.12 教学单元十二: 第二章 流体输送设备	25
7. 12. 1 教学日期	25

	7. 12. 2 教学目标	25
	7.12.3 教学内容(含重点、难点)	25
	7. 12. 4 教学过程	26
	7. 12. 5 教学方法	27
	7. 12. 6 作业安排及课后反思	27
	7.12.7课前准备情况及其他相关特殊要求	27
7.	13 教学单元十三: 第二章 流体输送设备	27
7.	13.1 教学日期	27
	7.13.2 教学目标	27
	7.13.3 教学内容(含重点、难点)	27
	7. 13. 4 教学过程	28
	7. 13. 5 教学方法	29
	7.13.6作业安排及课后反思	29
	7.13.7课前准备情况及其他相关特殊要求	29
7.	14 教学单元十四: 第二章 流体输送设备	29
7.	14.1 教学日期	29
	7. 14. 2 教学目标	29
	7.14.3 教学内容(含重点、难点)	29
	7. 14. 4 教学过程	30
	7. 14. 5 教学方法	30
	7. 14. 6 作业安排及课后反思	31
	7.14.7课前准备情况及其他相关特殊要求	31
7.	15 教学单元十五: 第三章 非均相物系的分离和固体流态化	31
7.	15.1 教学日期	31
	7. 15. 2 教学目标	31
	7.15.3 教学内容(含重点、难点)	31
	7. 15. 4 教学过程	31
	7. 15. 5 教学方法	32
	7. 15. 6 作业安排及课后反思	32
	7.15.7课前准备情况及其他相关特殊要求	32

7.16 教学单元十六: 第三章 非均相物系的分离和固体流态化	32
7.16.1 教学日期	32
7.16.2 教学目标	32
7.16.3 教学内容(含重点、难点)	33
7.16.4 教学过程	33
7.16.5 教学方法	34
7.16.6作业安排及课后反思	34
7.16.7课前准备情况及其他相关特殊要求	34
7.17 教学单元十七: 第三章 非均相物系的分离和固体流态化	34
7.17.1 教学日期	34
7.17.2 教学目标	34
7.17.3 教学内容(含重点、难点)	34
7.17.4 教学过程	35
7.17.5 教学方法	35
7.17.6作业安排及课后反思	35
7.17.7课前准备情况及其他相关特殊要求	36
7.18 教学单元十八:第三章 非均相物系的分离和固体流态化	36
7.18.1 教学日期	36
7.18.2 教学目标	36
7.18.3 教学内容(含重点、难点)	36
7.18.4 教学过程	36
7. 18. 5 教学方法	37
7.18.6作业安排及课后反思	37
7.18.7课前准备情况及其他相关特殊要求	37
7.19 教学单元十九:第三章 非均相物系的分离和固体流态化	38
7. 19. 1 教学日期	38
7. 19. 2 教学目标	38
7.19.3 教学内容(含重点、难点)	38
7.19.4 教学过程	38
7. 19. 5 教学方法	39

7.19.6作业安排及课后反思	39
7.19.7课前准备情况及其他相关特殊要求	39
7.20 教学单元二十:期中考试	39
7. 20. 1 教学日期	39
7.21 教学单元二十: 第四章 传热	39
7. 21. 1 教学日期	39
7.21.2 教学目标	39
7.21.3 教学内容(含重点、难点)	40
7.21.4 教学过程	40
7. 21. 5 教学方法	41
7.21.6作业安排及课后反思	41
7.21.7课前准备情况及其他相关特殊要求	41
7.22 教学单元二十二: 第四章 传热	41
7. 22. 1 教学日期	41
7. 22. 2 教学目标	41
7.22.3 教学内容(含重点、难点)	41
7. 22. 4 教学过程	42
7. 22. 5 教学方法	42
7.22.6作业安排及课后反思	42
7.22.7课前准备情况及其他相关特殊要求	43
7.23 教学单元二十三: 第四章 传热	43
7. 23. 1 教学日期	43
7.23.2 教学目标	
7.23.3 教学内容(含重点、难点)	43
7.23.4 教学过程	43
7.23.5 教学方法	44
7.23.6作业安排及课后反思	44
7.23.7课前准备情况及其他相关特殊要求	44
7.24 教学单元二十四: 第四章 传热	45
7. 24. 1 教学日期	45

7. 24. 2 教学目标45
7.24.3 教学内容(含重点、难点)45
7. 24. 4 教学过程45
7. 24. 5 教学方法46
7.24.6作业安排及课后反思46
7.24.7课前准备情况及其他相关特殊要求46
7.25 教学单元二十五: 第四章 传热46
7. 25. 1 教学日期46
7. 25. 2 教学目标46
7.25.3 教学内容(含重点、难点)46
7. 25. 4 教学过程47
7. 25. 5 教学方法47
7.25.6作业安排及课后反思48
7.25.7课前准备情况及其他相关特殊要求48
7.26 教学单元二十六: 第四章 传热48
7. 26. 1 教学日期
7. 26. 2 教学目标48
7.26.3 教学内容(含重点、难点)48
7. 26. 4 教学过程48
7. 26. 5 教学方法49
7. 26. 6 作业安排及课后反思
7.26.7课前准备情况及其他相关特殊要求49
7.27 教学单元二十七: 第四章 传热49
7. 27. 1 教学日期
7. 27. 2 教学目标49
7.27.3 教学内容(含重点、难点)49
7. 27. 4 教学过程49
7. 27. 5 教学方法49
7.27.6 作业安排及课后反思50
7.27.7课前准备情况及其他相关特殊要求50

	7.28 教学单元二十八: 第四章 传热	. 50
	7. 28. 1 教学日期	. 50
	7. 28. 2 教学目标	. 50
	7.28.3 教学内容(含重点、难点)	. 50
	7. 28. 4 教学过程	. 50
	7. 28. 5 教学方法	. 51
	7. 28. 6 作业安排及课后反思	. 51
	7. 28. 7 课前准备情况及其他相关特殊要求	. 51
8.	课程要求	. 52
	8.1 学生自学要求	. 52
	8. 2 课外阅读要求	. 52
9.	课程考核	. 52
	9.1 出勤(迟到、早退等)、作业、报告等的要求	. 52
	9.2 成绩的构成与评分规则说明	. 52
	9.3 考试形式及说明	. 52
10.	学术诚信	. 52
11.	课堂规范	. 52
12.	课程资源	. 53
	12.1 教材与参考书	. 53
	12.2 网络课程资源	. 54
13.	教学合约	. 54
14.	其他说明	54

《化工原理》(上)课程实施大纲

1. 教学理念

公平对待每一个学生。

教师向学生讲授"为什么", 远不如学生向教师提出"为什么"。

以学生为中心,以毕业要求的能力要求为基础,促进学生能力发展。

2. 课程介绍

化工原理是化工工艺类及其相近专业的一门主干课,是一门很重要的技术基础课,它在基础课和专业课之间起着承前启后、由理及工的桥梁作用,又是各种化工专业课程的基础。

化工原理这门课程经历了工艺学阶段、单元操作阶段和传递过程阶段。

1923年Walker W. H.出版了第一部以单元操作为线索而编写的化工原理教材

《Principles of Chemical Engineering》。该著作从以产品来划分的化工生产工艺中,抽象出各种单元操作,即从特殊性中总结出普遍性,是认识上的一个飞跃,对化学工程学的形成和发展起了重要的推动作用。

1960年Bird R. B.出版了第一部基于以传递过程为线索而编写的化工原理传递教材《Transport Phenomena》。教材提出三传遵循的"唯象现象":物理量的传递速率∝传递过程的推动力/阻力,是化学工程发展史的又一里程碑。

20世纪**70**年代以后,随着计算机技术的快速发展,推动了化学工程向"过程优化集成"、"分子模拟"等新阶段。

当前,课程的发展从单元操作向过程更新和过程强化两个方向发展。过程更新包括理论更新,如平衡分离分子学、膜基气体吸收理论等和技术更新,如计算机模拟计算技术、超临界流体萃取技术;过程强化包括设备强化,如新型塔内件开发、换热器传热强化等和过程集成,如精馏节能的热偶技术系统优化的夹点技术等发展。

随着科学技术的高速发展,化学工程与相邻学科相融合逐渐形成了若干新的分支与生长点,如;生物化学工程、分子化学工程、环境化学工程、能源化学工程、计算机化学工程、软化学工程、微电子化学工程等。同时,上述新兴产业与学科的发展也推动了特殊领域化学工程的进步。

化工原理是化学工程与工艺及相关专业最重要的技术基础课之一。通过这门课程的 学习,要使学生系统地获得:'三传'的基本概念;各单元操作的原理、典型设备的结构、工艺尺寸计算、设备选型与校核和工程学科的研究方法。培养学生的工程观念、分 析和解决单元操作中各种问题的能力。突出课程的实践性,使学生受到利用自然科学的基本原理解决实际工程问题的初步训练,提高学生的定量运算能力、实验技能、设计能力、单元操作的分析与调节能力。

3. 教师简介

3.1 教师的职称、学历

任课教师:马燮;职称:教授;学历:硕士研究生

3.2 教育背景

1987-1991 年 四川轻化工学院(现四川理工学院)无机化工专业 工学学士; 1997-2000 年 华南理工大学化工学院 化学工程专业 工学硕士;

3.3 研究兴趣(方向)

传质与分离技术

4. 先修课程

《高等数学》、《普通物理》、《物理化学》、《计算方法》、《化工设备设计基础》

5. 课程目标

- 1. 掌握化工过程的基本原理和典型设备的构造及性能;
- 2. 通过本课程知识的系统学习,培养学生的工程观点和解决工程实际问题的能力,包括对化工单元操作进行工程计算的能力、正确运用工程图表的能力以及运用技术经济观点分析、解决工程实际问题的能力;
- 3. 通过学习一些处理工程问题的基本方法,如因次分析法、数学模型法、过程分解法、试差计算法和图解计算法等,使学生具备在不同场合选用不同方法处理工程问题的能力;
- 4. 通过对基本原理、工程计算和典型设备的讲授,培养学生从过程的基本原理出发,观察、分析、综合、归纳众多影响因素,从中找出问题的主要方面,运用所学知识解决工程问题的科学思维能力和创新思维能力;
- 5. 通过本课程学习,培养学生的自学能力和独立工作能力,能根据所处理问题的需要,寻找、阅读有关手册、参考书、文献资料并理解其内容。

6. 课程内容

6.1 课程的内容概要

化工原理上册主要内容包括:绪论、第一章流体流动、第二章流体输送机械、第三章机械分离和固体颗粒流态化、第四章传热。各部分教学内容及教学要求如下所示。

6.1.1 绪论

掌握的内容:

- 1、掌握单位换算方法;
- 2、掌握物、热衡算的原则以及衡算的方法和步骤。

熟悉的内容:

1、熟悉单元操作的概念及其在化工过程中的地位。

了解的内容:

- 1、了解化工原理的目的、任务、化学工程的发展简史;
- 2、了解讨程谏率、平衡关系。

6.1.2 第一章 流体流动

掌握的内容:

- 1、流体的密度和粘度的定义、单位、影响因素及数据获取;
- 2、压强的定义、表达方法、单位换算;
- 3、流体静力学方程、连续性方程、柏努利方程及其应用;
- 4、流体的流动类型及其判断、蕾诺准数的物理意义、计算;
- 5、流体阻力产生的原因、流体在管内流动的机械能损失计算;
- 6、管路的分类、简单管路计算及输送能力核算;
- 7、液柱式压差计、测速管、孔板流量计和转子流量计的工作原理、基本结构、安装要求和计算;
 - 8、因次分析的目的、意义、原理、方法、步骤;

熟悉的内容:

- 1、流体的连续性和压缩性,定常态流动与非定常态流动;
- 2、层流与湍流的特征:
- 3、圆管内流速分布公式及应用:
- 4、Hagon-Poiseeuille 方程推导和应用;
- 5、复杂管路计算的要点;
- 6、正确使用各种数据图表;

了解的内容:

- 1、牛顿粘性定律,牛顿流体与非牛顿流体;
- 2、边界层的概念、边界层的发展、层流底层、边界层分离。

6.1.3 第二章 流体输送机械

掌握的内容:

- 1、离心泵的结构、工作原理、性能参数、特性曲线及应用;
- 2、影响离心泵性能的主要因素,离心泵特性曲线测定;
- 3、管路特性曲线, 离心泵的工作点及流量调节:
- 4、允许吸上真空高度、允许气蚀余量,确定泵的安装高度;
- 5、离心泵的设计型计算与操作型计算、离心泵的操作要点;

熟悉的内容:

- 1、离心泵的组合操作及选择组合形式的原则:
- 2、往复泵的结构、工作原理、性能参数、特性曲线、操作要点与应用。

了解的内容:

- 1、离心力场中的流体静压强分布;
- 2、了解其它泵的工作原理。

6.1.4 第三章 非均相物系的分离和固体流态化

掌握的内容:

- 1、颗粒特性与表征、颗粒群的性质:
- 2、重力沉降速度的计算与应用、降尘室计算:
- 3、过滤基本方程式及应用、过滤常数定义及计算;
- 4、恒压过滤方程、恒速过滤、先恒速后恒压过滤方程及应用;
- 5、板框过滤机、叶滤机、转鼓真空过滤机等的基本结构、洗涤速率及生产能力计算;
 - 6、旋风分离器的临界直径、分离效率、压降:

熟悉的内容:

- 1、离心沉降速度的特点、计算;
- 2、旋风分离器的分离原理、结构、选用;
- 3、过滤介质的种类,助滤剂的作用与选用;

了解的内容:

- 1、非均相物系分离的目的、依据、方法:
- 2、床层特性与表征;

3、流态化的定义、分类,流化床的特征。

6.1.5 第四章 传热

掌握的内容:

- 1、热传导基本原理,一维定常态傅立叶定律及应用,平壁及圆筒壁一维定常态热传导计算与分析;
 - 2、对流传热基本原理,牛顿冷却定律,影响对流传热的主要因素;
- 3、无相变管内强制对流的 α 关联式及应用; Nu、Re、Pr、Gr 等的物理意义及计算。 正确选用 α 的计算式,注意其用法和使用条件;
- 4、传热计算:传热速率方程与热负荷的计算、平均温差推动力、总传热系数、污垢热阻、壁温计算、传热面积、加热程度和冷却程度计算、强化传热的途径;

熟悉的内容:

- 1、对流传热系数经验式建立的一般方法;
- 2、蒸汽冷凝、液体沸腾对流传热系数计算;
- 3、传热效率、传热单元数及其在传热操作型计算中的应用;
- 4、热辐射的基本概念、两灰体间辐射传热计算;
- 5、列管换热器的结构及选型计算。

了解的内容:

- 1、加热剂、冷却剂的种类和选用;
- 2、各种常用换热器的结构特点及应用;
- 3、高温设备热损失计算。

6.2 教学重点、难点

6.2.1 绪论

重点: 化工单元操作; 化工原理的性质、任务及研究方法。

难点: 化工单元操作; 化工原理的工程性。

6.2.2 第一章 流体流动

重点:流体静力学基本法方程、连续性方程、伯努利方程的应用;流动阻力的计算。 难点:伯努利方程的推导及应用;流动阻力产生的原因;边界层的概念;量纲分析法。

6.2.3 第二章 流体输送机械

重点: 离心泵的特性曲线及其影响因素; 管路特性曲线方程式及工作点; 离心泵

的选用。

难点: 离心泵的工作点的改变; 离心泵安装高度的计算。

6.2.4 第三章 非均相物系的分离和固体流态化

重点:重力沉降速度计算及降尘室;旋风分离器的性能;过滤基本方程及恒压过滤方式计算。

难点: 过滤基本方程的推导: 过滤常数的理解: 过滤设备。

6.2.5 第四章 传热

重点:傅里叶定律及其一维稳态热传导应用;牛顿冷却定律和影响对流传热系数的主要因素;流体在圆形直管内强制湍流传热及对流传热系数的计算;换热器的热负荷计算,对数平均温度差的计算;总传热系数的计算;换热器的设计型计算。

难点:传热过程中传热速率、传热推动力和热阻的基本概念;牛顿冷却定律;换热器的总传热系数与对流传热系数的关系及其简化应用;换热器的核算型计算。

6.3 学时安排

6.3.1 绪论

参考学时: 2学时

6.3.2 第一章 流体流动

参考学时: 18 学时

	章	节	名	称		学	时	分	配
1.0 概述								1	
1.1 流体的	物理	性质					:	2	
1.2 流体前	力学	基本方	程					2	
1.3 流体流动的基本方程			2						
1.4 流体流	[动现]	象						2	
1.5 流体在	三管内	的流动	阻力				4	4	
1.6 管路计	算						;	3	
1.7 流量测	量							2	
6 3 3 第-	一音》	杏/木蛤-	关 扣 杻	}					

6.3.3 第二章 流体输送机械

参考学时:8学时

章 节 名 称 学 时 分 配

2.0 概述]	l			
2.1 离心泵		3				
2.2 其他类型的液体输送机械]	l			
6.3.4 第三章 机械分离和固体颗粒流态化						
参考学时: 10						
章 节 名 称	学	时	分	配		
3.0 概述]	l			
3.1 颗粒及颗粒床层的特性]	L			
3.2 沉降过程		2	2			
3.3 过滤		6	3			
6.3.5 第四章 传热						
参考学时: 16 学时						
章 节 名 称	学	时	分	配		
4.1 概述]	l			
4.2 热传导		3	3			
4.3 对流传热概述 2						
4.4 传热过程计算		4	1			
4.5 对流传热系数关联式		2	2			
4.6 辐射传热]	l			
4.7 换热器]	l			
习题课		2	2			
7. 课程实施						
7.1 教学单元一: 绪论						
7.1.1 教学日期						
第三周周一的 9,10 节						
7.1.2 教学目标						
(1) 了解单元操作的基本概念						
(2)了解化工原理的目的和任务						
(3) 了解化工原理的主要内容						
(4) 了解化工原理的性质和研究方法						

(5) 熟悉单位制及单位换算; 物料衡算和能量衡算等基本概念

7.1.3 教学内容(含重点、难点)

知识点:

- (1) 化工生产过程及单元操作
- (2) 化工原理的目的和任务
- (3) 化工原理的主要内容
- (4) 化工原理的性质和研究方法
- (5) 单位制及单位换算; 物料衡算、能量衡算、过程速率

重点:

(1) 化工原理的性质、任务及研究方法

难点:

(1) 化工单元操作: 化工原理的工程性

7.1.4 教学过程

- (1) 以典型化工生产过程为例,引入化工单元操作的概念
- (2) 化工原理的研究内容
- (3) 介绍单元操作的分类
- (4) 化工原理的研究方法
- (5) 简单介绍物料衡算、能量衡算的概念, 描述化工过程速率的概念
- (6) 简单回顾单位、单位制及相互换算;介绍经验公式及换算

7.1.5 教学方法

授课准备;熟悉所讲的内容、思考具体的教学方法和手段。如:

- 1)备课时会结合生活实例,让同学参与课堂思考,吸引同学兴趣:如结合生活中的实际传热现象,以传热过程速率为例来理解化工过程速率的概念
 - 2) 设置课堂提问: 以提问的方式让同学回顾所学的单位制
 - 3)准备好课件及其他教学设备

7.1.6 作业安排及课后反思

1, P8: 1, 3;

7.1.7课前准备情况及其他相关特殊要求

预习相关内容,参考资料:

1、大连理工大学化工原理教研室编,《化工原理》(上册),大连理工大学出版社,

大连, 1992

2、陈敏恒,丛德滋,方图南等编,《化工原理》(上册)(第二版),化学工业出版社,北京,1999

7.2 教学单元二:第一章 流体流动

7.2.1 教学日期

第三周周二的1,2节

7.2.2 教学目标

- (1) 熟悉流体的密度、压强
- (2) 掌握静力学基本方程

7.2.3 教学内容(含重点、难点)

知识点:

- (1) 流体及连续介质模型
- (2) 流体密度的定义、计算及影响因素;流体压强的定义、单位及表示
- (3) 流体的粘性
- (4) 流体静力学基本方程推导,静力学基本方程形式、等压面

重点:

- (1) 压强的不同单位和表示
- (2) 静力学基本方程的应用

难点:

(1) 压强的不同表示; 等压面的判断; 静力学基本方程的应用

7.2.4 教学过程

复习上一讲学习内容

- 1.1 流体的重要性质
- 一、连续介质假定
- 二、流体的密度

密度的定义、单位及物理意义;影响密度的因素:密度数据来源:查手册和通过计算;与密度相关的一些参数:比容、比重、重度。

三、流体的粘性

牛顿粘性定律; 粘度; 牛顿型流体、非牛顿型流体

1.2 流体静力学

一、流体的静压强

压强的定义、单位及不同单位之间的换算关系;压强的表示:绝对压强、表压强(或真空度)及他们之间的关系。

二、流体静力学基本方程的推导

静力学基本方程的推导、形式及讨论(注意等压面的正确判断) 静力学基本方程的应用:压强或压强差的测定(U形管压差计)

7.2.5 教学方法

授课准备:熟悉所讲的内容、思考具体的教学方法和手段;准备好课件及其他教学 设备

采用多媒体与板书相结合教学,重点的内容采用每节课小结的方式,将该课需要重点掌握的突出在多媒体上显示出来,便于记笔记的同学能够做一定的记录,同时可以给学生一个整体的概念,课下复习时也有章可寻。

7.2.6 作业安排及课后反思

1, *P*78: 1, 2;

7.2.7课前准备情况及其他相关特殊要求

预习相关内容,参考资料:

- 1、大连理工大学化工原理教研室编,《化工原理》(上册),大连理工大学出版社,大连,1992
- 2、陈敏恒,丛德滋,方图南等编,《化工原理》(上册)(第二版),化学工业出版社,北京,1999

7.3 教学单元三:第一章 流体流动

7.3.1 教学日期

第四周周一的9,10节

7.3.2 教学目标

- (1) 进一步熟悉静力学基本方程形式及应用
- (2) 理解稳定流动与非稳定流动系统,流量与流速的概念与关系
- (3) 掌握连续性方程

7.3.3 教学内容(含重点、难点)

知识点:

- (1) 静力学基本方程的应用:各种压差计测量压强或压强差、液位的测量、液封高度的计算
- (2)流体流动相关基本概念:稳定流动系统、非稳定流动系统;流量与流速;管 径的选择
 - (3) 连续性方程: 总质量衡算式、稳定流动系统的物料衡算式——连续性方程重点:
 - (1) 静力学基本方程的应用
 - (2) 流量与流速的关系
 - (3) 连续性方程

难点:

(1) 连续性方程

7.3.4 教学过程

复习上一讲学习内容, 采用提问的方式

三、流体静力学基本方程的应用

压强或压强差的测定(倾斜式压差计、微差压差计、倒置U形管压差计);

液封高度的计算;

液位的测量

1.3 流体流动的基本方程

一、流量与流速

流量:质量流量与体积流量的定义、单位及关系;

流速:质量流速、平均流速的定义、单位及关系;

流量与流速的关系:

管径的选择

- 二、稳定流动、非稳定流动;
- 三、连续性方程

质量守恒定律;连续性方程: Ws1=Ws2=•••=C; Vs1=Vs2=••••

7.3.5 教学方法

授课准备:熟悉所讲的内容、思考具体的教学方法和手段:准备好课件及其他教学

设备

采用多媒体与板书相结合教学,重点的内容采用每节课小结的方式,将该课需要重点掌握的突出在多媒体上显示出来,便于记笔记的同学能够做一定的记录,同时可以给学生一个整体的概念,课下复习时也有章可寻。

7.3.6作业安排及课后反思

1, *P*79: 5, 7

7.3.7课前准备情况及其他相关特殊要求

预习相关内容,参考资料:

- 1、大连理工大学化工原理教研室编,《化工原理》(上册),大连理工大学出版社,大连,1992
- 2、陈敏恒,丛德滋,方图南等编,《化工原理》(上册)(第二版),化学工业出版社,北京,1999

7.4 教学单元四:第一章 流体流动

7.4.1 教学日期

第四周周二的1,2节

7.4.2 教学目标

(1) 掌握伯努利方程

7.4.3 教学内容(含重点、难点)

知识点:

- (1) 伯努利方程的推导:
- (2) 伯努利方程的讨论。

重点:

(1) 伯努利方程的形式及讨论。

难点:

(1) 伯努利方程的推导

7.4.4 教学过程

复习上一讲学习内容, 采用提问的方式

1.3 流体流动的基本方程

四、能量衡算方程

- (1)以1kg流体为基准的稳定流动系统的总能量衡算式推导内能、位能、动能、静压能。
- (2) 机械能衡算式——伯努利方程的推导

热力学第一定律; 伯努利方程:

(3) 伯努利方程的讨论

各项单位: J/kg;

gZ、u²/2、p/ρ: 单位质量流体在截面上所具有的机械能; We、 Σ hf: 单位质量流体在1-1'、2-2'截面流过时获得、消耗的机械能;

$$\begin{split} g\Delta Z &+ \frac{\Delta u^2}{2} + \frac{\Delta p}{\rho} = \textit{We} - \sum h_f \\ \vec{\mathbb{E}} Z_1 g &+ \frac{u_1^2}{2} + \frac{p_1}{\rho} + \textit{We} = Z_2 g + \frac{u_2^2}{2} + \frac{p_2}{\rho} + \sum h_f \end{split}$$

 $\Xi We=0$; 流体为理想流体(粘度为0), $\Sigma hf=0$, 则伯努利方程为,

$$Z_1g + \frac{u_1^2}{2} + \frac{p_1}{\rho} = Z_2g + \frac{u_2^2}{2} + \frac{p_2}{\rho}$$

对于静止流体,伯努利方程变为——流体静力学基本方程;

有效功率Ne=Ws×We

(4) 柏努利方程式的应用

7.4.5 教学方法

采用多媒体与板书、幻灯相结合教学课堂上与学生共同探讨, 启发学生的求新思维。

7.4.6 作业安排及课后反思

1, *P*79: 8, 9

7.4.7 课前准备情况及其他相关特殊要求

预习相关内容,参考资料:

- 1、大连理工大学化工原理教研室编,《化工原理》(上册),大连理工大学出版社,大连,1992
- 2、陈敏恒,丛德滋,方图南等编,《化工原理》(上册)(第二版),化学工业出版社,北京,1999

7.5 教学单元五: 第一章 流体流动

7.5.1 教学日期

第五周周一的9,10节

7.5.2 教学目标

(1) 掌握伯努利方程的应用

7.5.3 教学内容(含重点、难点)

知识点:

- (1) 伯努利方程应用步骤和注意事项;
- (2) 举例熟悉伯努利方程。

重点:

(1) 伯努利方程的应用。

难点:

(1) 伯努利方程的应用。

7.5.4 教学过程

- (1) 总结上一次课的主要内容
- (2) 应用伯努利方程的步骤和注意事项
 - ①根据题意,画出示意流程图:
 - ②选取衡算范围(控制体),即1-1',2-2'截面的选取;
 - ③选取基准水平面。
- (3) 伯努利方程的应用

使用柏努利方程的注意事项

- ➤控制体的选择: 控制体内的流体必须连续、均质; 有流体进出的那些控制面(流通截面) 应与流动方向相垂直, 且已知条件最多; 包含待求变量。
- ▶基准水平面的选取:
- ▶压力: 方程式两端的压强可以用绝压,也可以用表压,但两边必须统一。
- ➤单位: 在计算前, 应将各个量的单位都换算为 SI 制中相应的单位。

7.5.5 教学方法

采用多媒体与板书相结合教学,重点的内容采用每节课小结的方式,将该课需要重点掌握的突出在多媒体上显示出来,便于记笔记的同学能够做一定的记录,同时可以给学生一个整体的概念,课下复习时也有章可寻。

7.5.6 作业安排及课后反思

1, *P*79: 10, 12;

7.5.7课前准备情况及其他相关特殊要求

预习相关内容,参考资料:

- 1、大连理工大学化工原理教研室编,《化工原理》(上册),大连理工大学出版社,大连,1992
- 2、陈敏恒,丛德滋,方图南等编,《化工原理》(上册)(第二版),化学工业出版社,北京,1999

7.6 教学单元六:第一章 流体流动

7.6.1 教学日期

第五周周二的1,2节

7.6.2 教学目标

- (1) 掌握流体的流动类型及其判断、雷诺准数的物理意义、计算
- (2) 熟悉层流与湍流的特征
- (3) 了解牛顿粘性定律,牛顿流体与非牛顿流体
- (4) 边界层的概念、边界层的发展、层流底层、边界层分离

7.6.3 教学内容(含重点、难点)

知识点:

牛顿粘性定律及粘度.流体的流动类型:层流和湍流及判断,边界层的概念(形成、发展与分离)

重点:

- (1) 流体的流动类型及判断;
- (2) 层流与湍流的区。

难点:

(1) 边界层的形成与分离

7.6.4 教学过程

复习上一讲学习内容, 采用提问的方式

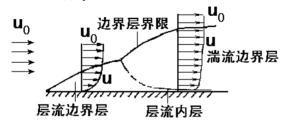
1.4 流体流动现象

- 一、流动型态与雷诺数
- (1) 雷诺实验

(2) 雷诺数

$$Re = \frac{du \rho}{\mu}$$

反映流体流动状态的数群


对于流体在直管内的流动:

Re≤2000, 层流; Re≥4000, 湍流

(3) 边界层与边界层分离现象(图解讲授)

平板上边界层的形成、发展;

实际流体 $\mu \neq 0$,壁面无滑脱

边界层---流动流体受固体壁面阻滞 而造成速度梯度的区域

圆管内的边界层,圆管内层流和湍流流体的流速分布; 边界层分离

7.6.5 教学方法

授课准备:熟悉所讲的内容、思考具体的教学方法和手段;准备好课件及其他教学设备

采用多媒体与板书相结合教学,重点的内容采用每节课小结的方式,将该课需要重点掌握的突出在多媒体上显示出来,便于记笔记的同学能够做一定的记录,同时可以给学生一个整体的概念,课下复习时也有章可寻。

7.6.6作业安排及课后反思

1、 P80: 14; P81: 15

7.6.7课前准备情况及其他相关特殊要求

预习相关内容,参考资料:

1、大连理工大学化工原理教研室编,《化工原理》(上册),大连理工大学出版社,大连,1992

- 2、陈敏恒,丛德滋,方图南等编,《化工原理》(上册)(第二版),化学工业出版社,北京,1999
- 7.7 教学单元七:第一章 流体流动
- 7.7.1 教学日期

第六周周一的9,10节

7.7.2 教学目标

- (1) 掌握流体阻力产生的原因、流体在管内流动的机械能损失计算
- (2) 了解圆管内流速分布公式及应用

7.7.3 教学内容(含重点、难点)

知识点:

- (1) 管路能耗产生的原因
- (2) 流动阻力的分类、计算及影响因素
- (3) 粗糙度的概念
- (4) 滞流时的摩擦系数的求取
- (5) 层流流体管内流速分布

重点:

- (1) 流动阻力计算式——范宁公式
- (2) 圆管内层流流速分布关系
- (3) 层流流动摩擦系数求取

难点:

- (1) 范宁公式;
- (2) 圆管内流速分布关系

7.7.4 教学过程

复习上一讲学习内容,采用提问的方式

1.5 流体在管内流动的阻力

流动阻力的分类及产生原因

流动阻力产生的原因:流体有粘性,流动时产生内摩擦——阻力产生根源;固体表面促使流动流体内部发生相对运动——提供了流动阻力产生的条件;流动阻力大小与流体本身物性,壁面形状及流动状况等因素有关。

流动阻力分类:

直管阻力

局部阻力

阻力的表现形式——压强降 Δ pf

- 一、流体在直管内的流动阻力(讲授、推导)
 - (1) 计算圆形直管阻力的通式

$$h_f = \lambda \frac{L}{d} \frac{u^2}{2}$$
 ——范宁公式

- (2) 管壁粗糙度及对摩擦系数的影响
- (3) 滯流时的摩擦系数(讲授推导)

流体在圆管内做层流时的流速分布:

$$u_Z = \frac{\Delta p}{4\mu L} \left(R^2 - r^2 \right)$$

层流时摩擦系数 λ 计算公式:

$$\lambda = \frac{64\mu}{du\rho} = \frac{64}{\text{Re}}$$

7.7.5 教学方法

授课准备:熟悉所讲的内容、思考具体的教学方法和手段;准备好课件及其他教学 设备

采用多媒体与板书相结合教学,重点的内容采用每节课小结的方式,将该课需要重点掌握的突出在多媒体上显示出来,便于记笔记的同学能够做一定的记录,同时可以给学生一个整体的概念,课下复习时也有章可寻。

7.7.6 作业安排及课后反思

1、*P*81: 18:

7.7.7 课前准备情况及其他相关特殊要求

预习相关内容,参考资料:

- 1、大连理工大学化工原理教研室编,《化工原理》(上册),大连理工大学出版社,大连,1992
- 2、陈敏恒,丛德滋,方图南等编,《化工原理》(上册)(第二版),化学工业出版社,北京,1999

7.8 教学单元八:第一章 流体流动

7.8.1 教学日期

第六周周二的1,2节

7.8.2 教学目标

- (1) 掌握湍流流动时摩擦系数的求取方法
- (2) 掌握局部阻力的计算

7.8.3 教学内容(含重点、难点)

知识点:

- (1) 量纲分析法
- (2) 摩擦系数与Re及管壁粗糙度的关系
- (3) 非圆形管路流动阻力的计算: 水力半径、当量直径
- (4) 局部阻力计算

重点:

- (1) 量纲分析法
- (2) 摩擦系数与Re及管壁粗糙度的关系
- (3) 局部阻力计算方法

难点:

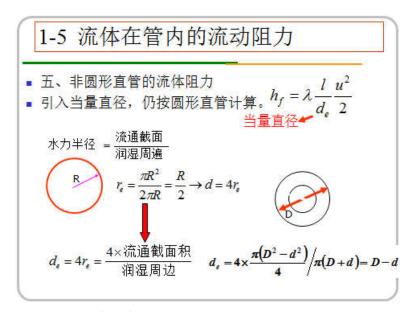
(1) 量纲分析法

7.8.4 教学过程

复习上一讲学习内容, 采用提问的方式

1.5 流体在管内流动的阻力

(4)湍流时的摩擦系数与量纲分析


量纲(因次)分析法(量纲一致性原则、π定理)

湍流摩擦系数的求取

$$\lambda = 2K(\frac{du\rho}{\mu})^{-k}(\frac{\varepsilon}{d})^q \mathbb{H}\lambda = f(\mathbb{R}e, \frac{\varepsilon}{d})$$

影响湍流流动阻力的因素; 用量纲分析法得出湍流流动摩擦系数的经验公式

(5) 流体在非圆形直管内的流动阻力

二、局部阻力计算

阻力系数法:克服局部阻力所引起的机械能损失,也可以表示成动能的函数。

当量长度法:将流体流过局部管件或阀的机械能损失等效为流过相同直径长度为1e的直管的机械能损失。 1e由实验测定或从有关手册查取。

三、管路系统中的总能量损失

四、举例

熟悉伯努利方程及流动阻力计算公式

7.8.5 教学方法

授课准备:熟悉所讲的内容、思考具体的教学方法和手段;准备好课件及其他教学 设备

采用多媒体与板书相结合教学,重点的内容采用每节课小结的方式,将该课需要重点掌握的突出在多媒体上显示出来,便于记笔记的同学能够做一定的记录,同时可以给学生一个整体的概念,课下复习时也有章可寻。

7.8.6 作业安排及课后反思

1, P81: 20: P82: 22

7.8.7课前准备情况及其他相关特殊要求

预习相关内容,参考资料:

- 1、大连理工大学化工原理教研室编,《化工原理》(上册),大连理工大学出版社,大连,1992
 - 2、陈敏恒,丛德滋,方图南等编,《化工原理》(上册)(第二版),化学工业出

版社, 北京, 1999

- 7.9 教学单元九:第一章 流体流动
- 7.9.1 教学日期

第七周周一的9,10节

7.9.2 教学目标

- (1) 掌握管路的分类、简单管路计算及输送能力核算
- (2) 了解管路计算分类及方法
- (3) 熟悉复杂管路计算的要点

7.9.3 教学内容(含重点、难点)

知识点:

- (1) 管路计算的分类及特点: 简单管路、复杂管路
- (2) 管路计算分类及计算方法

重点:

(1) 简单管路的计算

难点:

(1) 复杂管路的特点及计算

7.9.4 教学过程

复习上一讲学习内容, 采用提问的方式

1.6 管路计算

管路分类及特点

简单管路

复杂管路的分类及特点

并联管路的特点

分支管路的特点

例题讲解

P84思考题1、2、3、4。

7.9.5 教学方法

授课准备:熟悉所讲的内容、思考具体的教学方法和手段;准备好课件及其他教学设备

采用多媒体与板书相结合教学, 重点的内容采用每节课小结的方式, 将该课需要重

点掌握的突出在多媒体上显示出来,便于记笔记的同学能够做一定的记录,同时可以给 学生一个整体的概念,课下复习时也有章可寻。

7.9.6 作业安排及课后反思

1, P82: 25;

7.9.7 课前准备情况及其他相关特殊要求

预习相关内容,参考资料:

- 1、大连理工大学化工原理教研室编,《化工原理》(上册),大连理工大学出版社,大连,1992
- 2、陈敏恒, 丛德滋, 方图南等编, 《化工原理》(上册)(第二版), 化学工业出版社, 北京, 1999

7.10 教学单元十:第一章 流体流动

7.10.1 教学日期

第七周周二的1,2节

7.10.2 教学目标

- (1) 掌握测速管、孔板流量计的工作原理、基本结构、安装要求和计算
- (2) 掌握转子流量计的工作原理、基本结构、安装要求和计算

7.10.3 教学内容(含重点、难点)

知识点:

- (1) 测速管的结构、安装要求及计算
- (2) 孔板流量计的结构、安装及计算原理
- (3) 文丘里流量计的结构、计算原理
- (4) 转子流量计的结构、安装及计算

重点:

- (1) 孔板流量计的结构、安装及计算原理
- (2) 转子流量计的结构、安装及计算

难点:

(1) 孔板、转子流量计的计算原理

7.10.4 教学过程

回顾、复习上一次课的内容

1.7 流量测量

- (1) 测速管
- (2) 孔板流量计
- (3) 文丘里流量计
- (4) 转子流量计

本章小结

7.10.5 教学方法

授课准备:熟悉所讲的内容、思考具体的教学方法和手段;准备好课件及其他教学 设备

采用多媒体与板书相结合教学,重点的内容采用每节课小结的方式,将该课需要重点掌握的突出在多媒体上显示出来,便于记笔记的同学能够做一定的记录,同时可以给学生一个整体的概念,课下复习时也有章可寻。

7.10.6 作业安排及课后反思

1, P_{81} : 29;

7.10.7课前准备情况及其他相关特殊要求

预习相关内容,参考资料:

- 1、姚玉英,陈常贵,柴诚敬编著《化工原理学习指南一问题与习题解析》,天津大学出版社。
 - 2、谭天恩、麦本熙、丁惠华编《化工原理》上册,化工出版社。
 - 3、姚玉英 主编《化工原理例题与习题》, 化学工业出版社。

7.11 教学单元十一: 第二章 流体输送设备

7.11.1 教学日期

第八周周一的9,10节

7.11.2 教学目标

- (1) 掌握离心泵的结构、工作原理、性能参数
- (2) 了解离心力场中的流体静压强分布
- (3) 熟悉离心泵的基本方程式

7.11.3 教学内容(含重点、难点)

知识点:

- (1) 离心泵的工作原理、结构和主要部件
- (2) 理性泵的性能参数及基本方程

- (3)影响离心泵理论压头的因素 叶轮直径 D;转速 n;叶片形状 重点:
- (1) 离心泵的工作原理、主要部件及作用
- (2) 离心泵的性能参数

难点:

- (1) 离心泵的工作原理
- (2) 离心泵的基本方程

7.11.4 教学过程

提问的方式复习上一讲内容

流体输送机械概述

- 2.1 离心泵
- 2.1.1、离心泵的工作原理及主要部件
 - 一、工作原理:气缚现象的产生原因和预防
 - 二、主要部件:

叶轮的结构和作用;

泵壳的结构和作用;

轴封装置

- 2.1.2、离心泵的基本方程
 - 一、问题的提出
 - 二、数学模型的建立
 - 三、数学描述------离心泵基本方程式的推导

$$H_{T\infty} = \frac{u_2 c_2 \cos \alpha_2 - u_1 c_1 \cos \alpha_1}{g}$$

$$c_{2} \cos \alpha_{2} = u_{2} - c_{r2} ctg\beta_{2}$$

$$c_{r2} = \frac{Q_{T}}{\pi D_{2} b_{2}}, u_{2} = \frac{n2\pi R_{2}}{60} = \frac{n\pi D_{2}}{60}$$

$$H_{T\infty} = \frac{u_{2}^{2}}{g} - \frac{u_{2} ctg\beta_{2}}{g\pi D_{2} b_{2}} Q_{T}$$

四、离心泵基本方程式的讨论

叶轮的直径与转速

叶片的几何形状

理论流量

液体密度

7.11.5 教学方法

采用多媒体与板书相结合教学,重点的内容采用每节课小结的方式,将该课需要重点掌握的突出在多媒体上显示出来,便于记笔记的同学能够做一定的记录,同时可以给学生一个整体的概念,课下复习时也有章可寻。

7.11.6作业安排及课后反思

1, P138: 1:

7.11.7课前准备情况及其他相关特殊要求

预习相关内容,参考资料:

- 1、姚玉英,陈常贵,柴诚敬编著《化工原理学习指南一问题与习题解析》,天津大学出版社。
 - 2、谭天恩、麦本熙、丁惠华编《化工原理》上册,化工出版社。
 - 3、姚玉英 主编《化工原理例题与习题》, 化学工业出版社。

7.12 教学单元十二: 第二章 流体输送设备

7.12.1 教学日期

第八周周二的1,2节

7.12.2 教学目标

- (1) 掌握离心泵的特性曲线及应用
- (2) 掌握影响离心泵性能参数的因素

7.12.3 教学内容(含重点、难点)

知识点:

(1) 离心泵的特性曲线

H[~]Q 曲线; N[~]Q 曲线; η [~]Q 曲线

(2) 影响离心泵性能参数的因素

液体密度 p 、粘度、泵转速 n 、叶轮直径

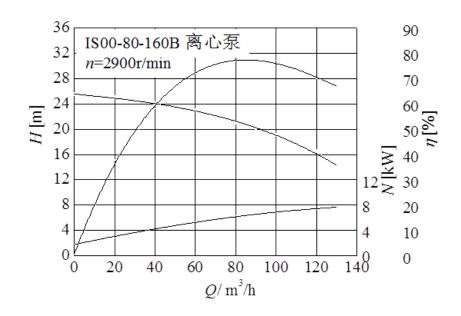
重点:

(1) 离心泵的特性曲线

- (2) 影响离心泵性能参数的因素 难点:
- (1) 影响离心泵性能参数的因素

7.12.4 教学过程

提问的方式复习上一讲内容


- 2.1.3 离心泵的性能参数与特性曲线
- 一、离心泵的主要性能参数
- 1、流量:
- 2、扬程:
- 3、效率:
- 二、离心泵的特性曲线

H~Q 曲线;

N~Q 曲线;

η ~Q 曲线,

离心泵的设计点。

三、影响离心泵性能的因素及性能换算 液体密度ρ的影响 粘度的影响 转速n的影响

叶轮直径 D2 的影响

7.12.5 教学方法

授课准备:熟悉所讲的内容、思考具体的教学方法和手段;准备好课件及其他教学 设备

采用多媒体与板书相结合教学,重点的内容采用每节课小结的方式,将该课需要重点掌握的突出在多媒体上显示出来,便于记笔记的同学能够做一定的记录,同时可以给学生一个整体的概念,课下复习时也有章可寻。

7.12.6作业安排及课后反思

1, P138: 2:

7.12.7 课前准备情况及其他相关特殊要求

预习相关内容,参考资料:

- 1、姚玉英,陈常贵,柴诚敬编著《化工原理学习指南一问题与习题解析》,天津大学出版社。
 - 2、谭天恩、麦本熙、丁惠华编《化工原理》上册,化工出版社。
 - 3、姚玉英 主编《化工原理例题与习题》, 化学工业出版社。

7.13 教学单元十三: 第二章 流体输送设备

7.13.1 教学日期

第九周周一的9,10节

7.13.2 教学目标

- (1) 掌握离心泵的汽蚀性能及泵的安装高度
- (2) 掌握管路特性曲线、离心泵的工作点及调节
- (3) 熟悉离心泵的串并联组合及组合方式选择原则

7.13.3 教学内容(含重点、难点)

知识点:

(1) 离心泵的安装高度

汽蚀现象; 汽蚀余量及安装高度; 吸上真空度及安装高度。

- (2) 管路特性方程(曲线)
- (3) 离心泵的工作点、工作点的调节

重点:

- (1) 离心泵的安装高度
- (2) 管路特性曲线、离心泵的工作点及调节

难点:

- (1) 离心泵的安装高度
- (2) 管路特性曲线
- (3) 泵的串并联组合

7.13.4 教学过程

提问的方式复习上一讲内容

- 2.1.4 离心泵的气蚀现象和允许安装高度
- 一、离心泵的气蚀现象

什么是汽蚀现象?

与气缚现象的区别?

汽蚀现象产生的原因及预防措施。

二、离心泵的抗气蚀性能

汽蚀余量

临界汽蚀余量(NPSH)c

必需汽蚀余量(NPSH)r

吸上真空度 Hs

允许吸上真空度

三、离心泵的允许安装高度

离心泵的安装高度

- 2.1.5 离心泵的工作点与流量调节
- 一、管路特性曲线
- 二、工作点:

管路特性方程、泵的特性方程联立求解即为泵的工作点。

三、离心泵的流量调节

流量调节也就是要使泵的工作点发生相应的移动,因此可以通过改变管路特性曲线或泵的特性曲线来完成。

工作点的调节方法

泵组合方式的选择原则。

7.13.5 教学方法

授课准备:熟悉所讲的内容、思考具体的教学方法和手段;准备好课件及其他教学 设备

采用多媒体与板书相结合教学,重点的内容采用每节课小结的方式,将该课需要重点掌握的突出在多媒体上显示出来,便于记笔记的同学能够做一定的记录,同时可以给学生一个整体的概念,课下复习时也有章可寻。

7.13.6作业安排及课后反思

1, P139: 6, 8

7.13.7课前准备情况及其他相关特殊要求

预习相关内容,参考资料:

- 1、姚玉英,陈常贵,柴诚敬编著《化工原理学习指南一问题与习题解析》,天津大学出版社。
 - 2、谭天恩、麦本熙、丁惠华编《化工原理》上册,化工出版社。
 - 3、姚玉英 主编《化工原理例题与习题》, 化学工业出版社。

7.14 教学单元十四: 第二章 流体输送设备

7.14.1 教学日期

第九周周二的1,2节

7.14.2 教学目标

- (1) 熟悉离心泵的型号及选用
- (2) 理解往复泵的工作原理及特性

7.14.3 教学内容(含重点、难点)

知识点:

- (1) 离心泵的型号及选用
- (2) 往复泵

重点:

(1) 离心泵的型号及选择

难点:

- (1) 离心泵的选择
- (2) 往复泵的特性

7.14.4 教学过程

提问的方式复习上一讲内容

- 2.1.6 离心泵的类型、选择与使用
- 一、离心泵的类型
- 二、离心泵的选择

离心泵的选型(以水泵为例)

- a. 根据流体的性质,选择泵的类型;
- b. 确定输送系统的流量 Qe 与压头 He:
- c. 在图 2-28 上找到比 Qe、He 稍大的点(指最高效率下的点)对应的一条曲线,该曲线对应的符号就是所选的泵的型号:
 - d. 查 P362 附录,列出泵的性能参数(Q与Qe最接近的一组数据):
 - e. 当单台泵不能满足管路要求时,要考虑泵的串联和并联;
 - f. 若输送液体的密度大于水的密度,则要核算泵的轴功率。
 - 三、离心泵的安装与操作
 - 四、计算
 - 2.2 其他类型化工用泵
 - 2.2.1 往复泵
 - 一、往复泵
 - 1、往复泵的基本结构和工作原理
 - 2、往复泵的性能参数与特性曲线
 - 3、往复泵的工作点与流量调节
 - 4、往复泵与离心泵的比较

本章小结

7.14.5 教学方法

授课准备:熟悉所讲的内容、思考具体的教学方法和手段;准备好课件及其他教学 设备

采用多媒体与板书相结合教学,重点的内容采用每节课小结的方式,将该课需要重点掌握的突出在多媒体上显示出来,便于记笔记的同学能够做一定的记录,同时可以给学生一个整体的概念,课下复习时也有章可寻。

7.14.6 作业安排及课后反思

1, P139: 3, 7

7.14.7课前准备情况及其他相关特殊要求

预习相关内容,参考资料:

- 1、姚玉英,陈常贵,柴诚敬编著《化工原理学习指南一问题与习题解析》,天津大学出版社。
 - 2、谭天恩、麦本熙、丁惠华编《化工原理》上册,化工出版社。
 - 3、姚玉英 主编《化工原理例题与习题》, 化学工业出版社。
- 7.15 教学单元十五: 第三章 非均相物系的分离和固体流态化
- 7.15.1 教学日期

第十周周一的9,10节

7.15.2 教学目标

- (1) 掌握重力沉降速度计算
- (2) 理解影响重力沉降速度的因素

7.15.3 教学内容(含重点、难点)

知识点:

- (1) 沉降概念
- (2) 沉降速度

重点:

(1) 沉降速度

难点:

沉降速度

7.15.4 教学过程

回顾总结上一次课的主要内容

- 3.1 概述
- 3.1.1 非均相混合物的分离方法
- 一、混合物分类

均相物系与非均相物系

- 二、非均相混合物系的分离方法。
- 三、非均相混合物分离的目的

- 3.1.2 颗粒的特性
- 一 、单一颗粒的特性
- 二 、颗粒群的特性
- 3.2 沉降分离

3.2.1 重力沉降

一、沉降速度

影响沉降速度的的因素:颗粒直径、流体粘度、颗粒浓度和形状等;

沉降速度的计算方法

试差法

摩擦数群法

无因次数群判别法

- 二、重力沉降设备
- 1、降尘室

7.15.5 教学方法

采用多媒体与板书相结合教学,重点的内容采用每节课小结的方式,将该课需要重点掌握的突出在多媒体上显示出来,便于记笔记的同学能够做一定的记录,同时可以给学生一个整体的概念,课下复习时也有章可寻。

7.15.6作业安排及课后反思

1, P206: 2, 3;

7.15.7课前准备情况及其他相关特殊要求

预习相关内容,参考资料:

- 1、姚玉英,陈常贵,柴诚敬编著《化工原理学习指南一问题与习题解析》,天津大学出版社。
 - 2、谭天恩、麦本熙、丁惠华编《化工原理》上册,化工出版社。
 - 3、姚玉英 主编《化工原理例题与习题》, 化学工业出版社。

7.16 教学单元十六: 第三章 非均相物系的分离和固体流态化

7.16.1 教学日期

第十周周二的1,2节

7.16.2 教学目标

(1) 掌握降尘室结构及计算

- (2) 理解离心沉降的原理、计算
- (3) 掌握旋风分离器的性能

7.16.3 教学内容(含重点、难点)

知识点:

- (1) 降尘室的结构及计算
- (2) 离心沉降原理及沉降速度
- (3) 旋风分离器的性能

重点:

- (1) 降尘室
- (2) 旋风分离器的性能

难点:

- (1) 离心沉降速度
- (2) 旋风分离器的性能

7.16.4 教学过程

回顾总结上一次课的主要内容

- 二、重力沉降设备
- 1、降尘室

分离原理:

多层降尘室;降尘室的特点

- 2、沉降槽
- 3、分级器
- 3.2.2 离心沉降
- 一、惯性离心力作用下的离心沉降速度

重力沉降速度

离心分离因子

- 二、旋风分离器的操作原理(图解讲授)
- 三、旋风分离器的性能:

临界直径:

分离效率

总效率和分效率

压强损失Δpf

影响旋风分离器分离性能的因素

四、旋风分离器类型与选用

五、旋液分离器

7.16.5 教学方法

采用多媒体与板书相结合教学,重点的内容采用每节课小结的方式,将该课需要重点掌握的突出在多媒体上显示出来,便于记笔记的同学能够做一定的记录,同时可以给学生一个整体的概念,课下复习时也有章可寻。

7.16.6作业安排及课后反思

1, P206 : 4, 5:

7.16.7课前准备情况及其他相关特殊要求

预习相关内容,参考资料:

- 1、姚玉英,陈常贵,柴诚敬编著《化工原理学习指南一问题与习题解析》,天津大学出版社。
 - 2、谭天恩、麦本熙、丁惠华编《化工原理》上册,化工出版社。
 - 3、姚玉英 主编《化工原理例题与习题》, 化学工业出版社。

7.17 教学单元十七: 第三章 非均相物系的分离和固体流态化

7.17.1 教学日期

第十一周周一的 9, 10 节

7.17.2 教学目标

- (1) 掌握颗粒特性与表征、了解颗粒群的性质,熟悉床层特性与表征
- (2) 熟悉过滤介质的种类, 助滤剂的作用与选用
- (3) 了解滤液通过饼层流动规律

7.17.3 教学内容(含重点、难点)

知识点:

- (1) 过滤操作的基本概念
- (2)颗粒床层的特性
- (3) 滤液通过饼层流动

重点:

(1)颗粒及固定床的特性

难点:

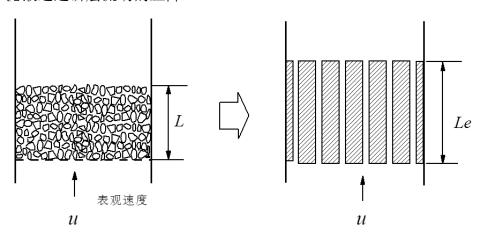
- (1)颗粒、颗粒群及固定床的特性
- (2) 滤液通过饼层流动

7.17.4 教学过程

回顾总结上一次课的主要内容

- 3.3 过滤
- 3.3.1 过滤操作原理

一、过滤方式


饼层过滤和深床过滤

- 二、过滤介质
- 三、滤饼的压缩性和助滤剂。
- 3.3.2颗粒床层的特性及流体流过床层的压降

一、颗粒床层的特性

固定床的特性:床层空隙率 ε;平均自由截面积 AO;床层的比表面积 ab

二、滤液通过饼层流动的压降

7.17.5 教学方法

采用多媒体与板书相结合教学,重点的内容采用每节课小结的方式,将该课需要重点掌握的突出在多媒体上显示出来,便于记笔记的同学能够做一定的记录,同时可以给学生一个整体的概念,课下复习时也有章可寻。

7.17.6 作业安排及课后反思

复习;

7.17.7课前准备情况及其他相关特殊要求

预习相关内容,参考资料:

- 1、姚玉英,陈常贵,柴诚敬编著《化工原理学习指南一问题与习题解析》,天津大学出版社。
 - 2、谭天恩、麦本熙、丁惠华编《化工原理》上册,化工出版社。
 - 3、姚玉英 主编《化工原理例题与习题》, 化学工业出版社。
- 7.18 教学单元十八:第三章 非均相物系的分离和固体流态化
- 7.18.1 教学日期

第十一周周二的1,2节

7.18.2 教学目标

- (1) 掌握过滤基本方程式及应用
- (2) 掌握板框过滤机、叶滤机、转鼓真空过滤机等的基本结构;

7.18.3 教学内容(含重点、难点)

知识点:

- (1) 过滤基本方程
- (2) 过滤设备

重点:

(1) 过滤基本方程

难点:

- (1) 过滤基本方程
- (2) 板框过滤机的结构;

7.18.4 教学过程

回顾总结上一次课的主要内容

- 3.3.3 过滤基本方程
- 一、滤液通过滤饼层的流动
- 二、过滤速率与过滤速度:

过滤速率 dV/d(: 单位时间内获得的滤液体积。 m^3/s ,

过滤速度 u: 指单位时间通过单位截面面积的滤液体积, m/s。

- 三、滤饼的阻力
- 四、过滤介质的阻力
- 五、过滤基本方程

$$\frac{dV}{d\theta} = \frac{KA^2}{2(V + V_e)}$$

3.3.4 过滤设备

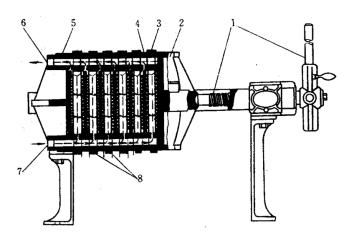


图 3-19 板框压滤机 1--压紧装置; 2--可动头; 3--滤框; 4--滤板; 5--固定头; 6--滤液出口; 7--滤浆进口; 8--滤布

- 一、板框过滤机
- 二、加压叶滤机:
- 三、转筒真空过滤机

7.18.5 教学方法

采用多媒体与板书相结合教学,重点的内容采用每节课小结的方式,将该课需要重点掌握的突出在多媒体上显示出来,便于记笔记的同学能够做一定的记录,同时可以给学生一个整体的概念,课下复习时也有章可寻。

7.18.6 作业安排及课后反思

1、复习

7.18.7课前准备情况及其他相关特殊要求

预习相关内容,参考资料:

1、姚玉英,陈常贵,柴诚敬编著《化工原理学习指南一问题与习题解析》,天津大学出版社。

- 2、谭天恩、麦本熙、丁惠华编《化工原理》上册,化工出版社。
- 3、姚玉英 主编《化工原理例题与习题》, 化学工业出版社。
- 7.19 教学单元十九:第三章 非均相物系的分离和固体流态化
- 7.19.1 教学日期

第十二周周一的9,10节

7.19.2 教学目标

- (1) 掌握恒压过滤方程、恒速过滤、先恒速后恒压过滤方程
- (2) 掌握滤饼洗涤速率计算;
- (3) 掌握过滤机生产能力计算

7.19.3 教学内容(含重点、难点)

知识点:

- (1) 恒压过滤方程、恒速过滤、先恒速后恒压过滤方程
- (2) 滤饼的洗涤速率及时间
- (3) 过滤机的生产能力

重点:

- (1) 恒压过滤方程、恒速过滤、先恒速后恒压过滤方程
- (2) 滤饼的洗涤速率及时间;
- (3) 过滤机的生产能力。

难点:

- (2) 滤饼的洗涤速率;
- (3) 转筒过滤机的生产能力

7.19.4 教学过程

回顾总结上一次课的主要内容

- 3.3.5 恒压过滤
- 3.3.6 恒速过滤和先恒速后恒压过滤
- 3.3.7 过滤常数的测定
- 3.3.8 滤饼的洗涤

板框洗涤速率:

叶滤机、转筒:

3.3.9 过滤机的生产能力

- 一、间歇过滤机的生产能力
- 二、连续过滤机的生产能力
- 3.6 固体流态化简介

总结本章主要内容

7.19.5 教学方法

采用多媒体与板书相结合教学,重点的内容采用每节课小结的方式,将该课需要重点掌握的突出在多媒体上显示出来,便于记笔记的同学能够做一定的记录,同时可以给学生一个整体的概念,课下复习时也有章可寻。

7.19.6 作业安排及课后反思

1, P207: 7, 10, P 208: 12, 13;

7.19.7课前准备情况及其他相关特殊要求

预习相关内容,参考资料:

- 1、姚玉英,陈常贵,柴诚敬编著《化工原理学习指南一问题与习题解析》,天津大学出版社。
 - 2、谭天恩、麦本熙、丁惠华编《化工原理》上册,化工出版社。
 - 3、姚玉英 主编《化工原理例题与习题》, 化学工业出版社。

业出版社。

7.20 教学单元二十: 期中考试

7.20.1 教学日期

第十二周周二的1,2节

具体时间由教研室统一安排

7.21 教学单元二十: 第四章 传热

7.21.1 教学日期

第十三周周一的9,10节

7.21.2 教学目标

- (1) 掌握三种传热基本方式的机理及特点
- (2) 了解工业常用的三种换热方式及典型间壁式换热器
- (3) 了解加热剂、冷却剂的种类和选用
- (4)掌握热传导基本原理,一维定常态傅立叶定律及应用,平壁一维定常态热传导计算与分析

7.21.3 教学内容(含重点、难点)

知识点:

- (1) 传热基本概念
- (2) 热传导的基本原理、傅里叶定律
- (3) 平壁一维稳定的热传导规律

重点:

- (1) 傅里叶定律
- (2) 平壁一维稳定的热传导规律。

难点:

- (1) 傅里叶定律
- (2) 热传导规律。

7.21.4 教学过程

回顾总结上一次课的主要内容

- 4.1 传热过程概述
- 4.1.1 传热的基本方式

热传导、

热对流 (对流传热)、

热辐射

4.1.2 传热过程中热、冷流体热交换方式

直接接触式

蓄热式

间壁式

4.1.3、典型的间壁式换热器

典型间壁式换热器:套管式、夹套式、列管式换热器

- 4.1.4 传热速率和热通量
- 4.1.5 稳态传热和非稳态传热
- 4.1.6 载热体及其选择

载热体及其选择: 加热剂和冷却剂

- 4.2 热传导
- 4.2.1 基本概念和傅立叶定律

4.2.2 导热系数

4.2.3 平壁的热传导

结论: (1) 对各层平壁,其 Δ t 越大,则对应其热阻 R 也越高; (2) 各层平壁导热通量 q=const。

7.21.5 教学方法

采用多媒体与板书相结合教学,重点的内容采用每节课小结的方式,将该课需要重点掌握的突出在多媒体上显示出来,便于记笔记的同学能够做一定的记录,同时可以给学生一个整体的概念,课下复习时也有章可寻。

7.21.6 作业安排及课后反思

1, P296 : 1

7.21.7 课前准备情况及其他相关特殊要求

预习相关内容,参考资料:

- 1、大连理工大学化工原理教研室编,《化工原理》(上册),大连理工大学出版社,大连,1992
- 2、陈敏恒,丛德滋,方图南等编,《化工原理》(上册)(第二版),化学工业出版社,北京,1999

7.22 教学单元二十二: 第四章 传热

7.22.1 教学日期

第十三周周二的1,2节

7.22.2 教学目标

- (1) 掌握圆筒壁一维稳定的热传导规律
- (2) 理解对流传热基本原理, 牛顿冷却定律
- (3) 理解影响对流传热的主要因素

7.22.3 教学内容(含重点、难点)

知识点:

- (1) 圆筒壁一维稳定的热传导规律
- (2) 对流传热分析、热边界层
- (3) 牛顿冷却定律、对流传热系数

重点:

(1) 圆筒壁一维稳定的热传导规律

(2) 牛顿冷却定律

难点:

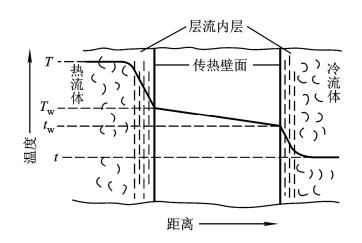
- (1) 圆筒壁一维稳定的热传导规律
- (2) 对流传热过程分析

7.22.4 教学过程

回顾总结上一次课的主要内容(提问)

- 4.2.4圆筒壁的一维稳定热传导(对比讲授)
- 4.3 对流传热概述

4.3.1 对流传热速率方程


一、对流传热速率方程

牛顿冷却定律

二、对流传热系数

4.3.2 对流传热机理

一、对流传热分析

二、热边界层

4.3.3 保温层的临界直径

7.22.5 教学方法

采用多媒体与板书相结合教学,重点的内容采用每节课小结的方式,将该课需要重点掌握的突出在多媒体上显示出来,便于记笔记的同学能够做一定的记录,同时可以给学生一个整体的概念,课下复习时也有章可寻。

7.22.6作业安排及课后反思

1, P297: 3, 4:

7.22.7课前准备情况及其他相关特殊要求

预习相关内容,参考资料:

- 1、大连理工大学化工原理教研室编,《化工原理》(上册),大连理工大学出版社,大连,1992
- 2、陈敏恒, 丛德滋, 方图南等编, 《化工原理》(上册)(第二版), 化学工业出版社, 北京, 1999
- 7.23 教学单元二十三: 第四章 传热
- 7.23.1 教学日期

第十四周周一的9,10节

7.23.2 教学目标

- (1) 掌握传热传热速率方程
- (2) 掌握热负荷、传热面积、总传热系数、平均温差推动力的计算

7.23.3 教学内容(含重点、难点)

知识点:

- (1) 传热速率基本方程
- (2) 热量衡算;换热器的传热面积和总传热系数
- (3) 简单流向的对数平均温度差

重点:

- (1) 传热速率基本方程
- (2) 热量衡算;换热器的传热面积和总传热系数
- (3) 简单流向的对数平均温度差

难点:

- (1) 传热速率基本方程
- (2) 总传热系数。

7.23.4 教学过程

回顾总结上一次课的主要内容

- 4.4 传热过程计算
- 4.4.1 热衡算 Q

$$Q = W_h r = W_c C_{pc} (t_2 - t_1)$$

$$Q = W_h [r + C_{ph} (T_s - T_2)] = W_c C_{pc} (t_2 - t_1)$$

流体无相变化

饱和蒸气冷凝

- 二、总传热速率微分方程和总传热系数
- 一、总传热速率微分方程
- 二、总传热系数 K
- 1、总传热系数的计算
- 1) 总传热系数的计算式

$$\frac{1}{K_o} = \frac{d_o}{\alpha_i d_i} + Rs_i \frac{d_o}{d_i} + \frac{bd_0}{\lambda d_m} + Rs_o + \frac{1}{\alpha_0}$$

- ——基于外表面积的总传热系数
- 2) 污垢热阻
- 3)提高总传热系数途径的分析
- 2、总传热系数的实验测定
- 3、总传热系数的经验值
- 4.4.3 平均温度差和总传热速率方程
- 一、恒温传热时的平均温差

7.23.5 教学方法

采用多媒体与板书相结合教学,重点的内容采用每节课小结的方式,将该课需要重点掌握的突出在多媒体上显示出来,便于记笔记的同学能够做一定的记录,同时可以给学生一个整体的概念,课下复习时也有章可寻。

7.23.6 作业安排及课后反思

1, P297: 6, 7:

7.23.7 课前准备情况及其他相关特殊要求

预习相关内容,参考资料:

1、大连理工大学化工原理教研室编,《化工原理》(上册),大连理工大学出版社,大连,1992

- 2、陈敏恒, 丛德滋, 方图南等编, 《化工原理》(上册)(第二版), 化学工业出版社, 北京, 1999
- 7.24 教学单元二十四: 第四章 传热
- 7.24.1 教学日期

第十四周周二的1,2节

7.24.2 教学目标

- (1) 掌握换热器流体流向的选择
- (2) 熟悉复杂流向平均温度差的求取
- (3) 通过举例熟悉传热计算的内容
- (4) 了解传热单元数法

7.24.3 教学内容(含重点、难点)

知识点:

- (1) 并流换热器和逆流换热器的比较
- (2) 复杂流换热器平均温度差的求取
- (3) 传热单元数法

重点:

- (1) 流向的选择
- (2) 传热计算内容的熟悉。

难点:

- (1) 复杂流换热器的计算
- (2) 传热单元数法

7.24.4 教学过程

回顾总结上一次课的主要内容

- 二、变温传热时的平均温差
- 1、并流和逆流时的平均温差
- 2、复杂流换热器平均温度差的求取
- 3、流向的选择
- 4.4.4总传热速率方程的应用
- 一、传热面积的计算
- 二、实验测定总传热系数

- 三、换热器的操作型计算
- 4.4.5 传热单元数法
- 一、传热效率 ε
- 二、传热单元数
- 三、传热效率与传热单元数的关系

传热计算练习

7.24.5 教学方法

采用多媒体与板书相结合教学,重点的内容采用每节课小结的方式,将该课需要重点掌握的突出在多媒体上显示出来,便于记笔记的同学能够做一定的记录,同时可以给学生一个整体的概念,课下复习时也有章可寻。

7.24.6 作业安排及课后反思

1、P297 : 10、11 题:

7.24.7课前准备情况及其他相关特殊要求

预习相关内容,参考资料:

- 1、大连理工大学化工原理教研室编,《化工原理》(上册),大连理工大学出版社, 大连,1992
- 2、陈敏恒,丛德滋,方图南等编,《化工原理》(上册)(第二版),化学工业出版社,北京,1999

7.25 教学单元二十五: 第四章 传热

7.25.1 教学日期

第十五周周一的9,10节

7.25.2 教学目标

- (1) 理解影响对流传热系数的因素
- (2) 理解对流传热系数准数关联式
- (3) 掌握流体在圆形直管内作强制湍流的对流传热系数经验关联式
- (4) 了解其他情况下的对流传热系数经验关联式
- (5) 蒸汽冷凝传热

7.25.3 教学内容(含重点、难点)

知识点:

(1) 分析影响对流传热系数的因素

- (2) 对流传热系数的准数关联式
- (3) 流体在圆形直管内作强制湍流的对流传热系数经验关联式
- (4) 蒸汽冷凝传热

重点:

- (1)流体在圆形直管内作强制湍流的对流传热系数经验关联式难点:
- (1) 影响对流传热系数的因素
- (2) 流体在圆形直管内作强制湍流的对流传热系数经验关联式

7.25.4 教学过程

回顾总结上一次课的主要内容

- 4.5 对流传热系数关联式
- 4.5.1 影响对流传热系数的因素
- 4.5.2 对流传热过程的因次分析
- 一、流体无相变时的强制对流传热过程
- 二、自然对流传热过程
- 三、应用准数关联式应注意的问题
- 1) 公式中各准数 Re、Pr、Gr 的适用范围:
- 2) 参数取值:
- 3) 注意公式修正。
- 4.5.3 流体无相变时的对流传热系数

流体在圆形直管内作强制湍流的对流传热系数经验关联式(讲授)

- 4.5.4 流体有相变时的对流传热系数
- 一、蒸汽冷凝传热

冷凝方式: 膜状冷凝和滴状冷凝

膜状冷凝传热系数

影响膜状冷凝传热的因素。

7.25.5 教学方法

采用多媒体与板书相结合教学,重点的内容采用每节课小结的方式,将该课需要重点掌握的突出在多媒体上显示出来,便于记笔记的同学能够做一定的记录,同时可以给学生一个整体的概念,课下复习时也有章可寻。

7.25.6 作业安排及课后反思

1, P298: 17, 18:

7.25.7课前准备情况及其他相关特殊要求

预习相关内容,参考资料:

- 1、大连理工大学化工原理教研室编,《化工原理》(上册),大连理工大学出版社,大连,1992
- 2、陈敏恒, 丛德滋, 方图南等编, 《化工原理》(上册)(第二版), 化学工业出版社, 北京, 1999
- 7.26 教学单元二十六: 第四章 传热
- 7.26.1 教学日期

第十五周周二的1,2节

7.26.2 教学目标

- (1) 掌握液体沸腾曲线
- (2) 理解壁温估算
- (3) 熟悉对流传热系数经验关联式的应用。
- (4) 掌握传热计算

7.26.3 教学内容(含重点、难点)

知识点:

- (1) 液体沸腾曲线
- (2) 壁温估算

重点:

- (1) 液体沸腾曲线。
- (2) 传热计算

难点:

(1) 壁温估算

7.26.4 教学过程

回顾总结上一次课的主要内容

- 二、液体沸腾
- 1、液体沸腾曲线
- 2、大容积饱和沸腾曲线

3、影响沸腾传热的因素

4.5.5 壁温的估算

传热综合计算练习

7.26.5 教学方法

采用多媒体与板书相结合教学,重点的内容采用每节课小结的方式,将该课需要重点掌握的突出在多媒体上显示出来,便于记笔记的同学能够做一定的记录,同时可以给学生一个整体的概念,课下复习时也有章可寻。

7.26.6作业安排及课后反思

P298: 13, 14:

7.26.7课前准备情况及其他相关特殊要求

预习相关内容,参考资料:

- 1、大连理工大学化工原理教研室编,《化工原理》(上册),大连理工大学出版社,大连,1992
- 2、陈敏恒,丛德滋,方图南等编,《化工原理》(上册)(第二版),化学工业出版社,北京,1999
- 7.27 教学单元二十七: 第四章 传热
- 7.27.1 教学日期

第十六周周一的9,10节

7.27.2 教学目标

- (1) 掌握传热过程计算
- 7.27.3 教学内容(含重点、难点)

重点:

(1) 传热过程计算

7.27.4 教学过程

- (1) 回顾总结上一次课的主要内容
- (2) 举例熟悉传热过程计算

7.27.5 教学方法

采用多媒体与板书相结合教学,重点的内容采用每节课小结的方式,将该课需要重点掌握的突出在多媒体上显示出来,便于记笔记的同学能够做一定的记录,同时可以给学生一个整体的概念,课下复习时也有章可寻。

7.27.6 作业安排及课后反思

复习及课本外习题练习;

7.27.7课前准备情况及其他相关特殊要求

预习相关内容,参考资料:

- 1、大连理工大学化工原理教研室编,《化工原理》(上册),大连理工大学出版社,大连,1992
- 2、陈敏恒, 丛德滋, 方图南等编, 《化工原理》(上册)(第二版), 化学工业出版社, 北京, 1999

7.28 教学单元二十八: 第四章 传热

7.28.1 教学日期

第十六周周二的1,2节

7.28.2 教学目标

- (1) 理解辐射传热基本概念和计算
- (2) 理解常用的换热器的结构

7.28.3 教学内容(含重点、难点)

知识点:

- (1) 辐射传热
- (2) 换热器

重点:

- (1) 辐射传热
- (2) 列管换热器

难点:

(1) 辐射传热

7.28.4 教学过程

回顾总结上一次课的主要内容

- 4.6 辐射传热
- 4.6.1 基本概念
- 一. 辐射和辐射传热
- 二. 吸收率、发射率、透过率

- 三. 灰体
- 4.6.2 物体的辐射能力和有关的定律
- 普朗克定律

斯蒂芬-波尔茨曼定律

两固体间的辐射传热速率

- 4.6.3 两固体间的辐射传热
- 4.6.4 对流和辐射的联合传热
- 4.7 换热器
- 4.7.1 间壁式换热器的类型
- 一、管式换热器
- 二、板式换热器
- 三、翅片式换热器
- 四、热管换热器
- 4.7.2 列管换热器的设计和选用
- 一、管壳式换热器的型号与系列标准
- 二、列管换热器设计时应考虑的问题
- 三、管壳式换热器的选用和设计计算步骤
- 4.7.3 传热的强化途径

本章小结

7.28.5 教学方法

采用多媒体与板书相结合教学,重点的内容采用每节课小结的方式,将该课需要重点掌握的突出在多媒体上显示出来,便于记笔记的同学能够做一定的记录,同时可以给学生一个整体的概念,课下复习时也有章可寻。

7.28.6 作业安排及课后反思

1、P299: 25 题;

7.28.7课前准备情况及其他相关特殊要求

预习相关内容,参考资料:

- 1、大连理工大学化工原理教研室编,《化工原理》(上册),大连理工大学出版社,大连,1992
 - 2、陈敏恒, 丛德滋, 方图南等编, 《化工原理》(上册)(第二版), 化学工业出

版社, 北京, 1999

8. 课程要求

8.1 学生自学要求

- 1、课前预习
- 2、上课时做好笔记,以备后续复习查阅
- 3、课后复习
- 4、认真对待课后作业,每次作业都是对所学知识的检验,不仅检验了运用知识的能力,更在很大程度上强化记忆,让自己能对所学知识有系统的认识。

8.2 课外阅读要求

课后可根据自己的兴趣适当的阅读与本课程相关的书籍、论著以及资料等。

9. 课程考核

9.1 出勤(迟到、早退等)、作业、报告等的要求

出勤: 学生应遵守《四川理工学院学生管理条例》中关于出勤的相关政策规定。本课程将采用倒扣分的形式,即对无故缺席的同学(包括课后补假的同学),每缺席 1 次平时成绩扣 10 分,直至扣完。如确因有事需要请假,请在授课前提交请假条。

迟到与早退: 上课铃后进入教室的同学算迟到,下课铃前擅自离开教室的同学算早退。3次无故迟到10分钟及10分钟以内的同学算缺席1次,1次无故迟到10分钟及10分钟以上的同学算缺席1次;1次无故早退的同学算缺席1次。

9.2 成绩的构成与评分规则说明

成绩构成及评分规则按《化工原理》教学大纲规定执行,即按平时成绩 30~40%和卷 面成绩 70~60%评定课程成绩。该门课程对教学要求相同、进度相同的班级进行统一考试,统一阅卷和评定成绩。

9.3 考试形式及说明

该门课程统一闭卷考试,对教学要求相同、进度相同的班级进行统一考试。

10. 学术诚信

考试作弊、协助他人作弊、杜撰数据信息、抄袭(包括抄袭他人作业、抄袭教辅 资料答案)、学术剽窃等皆视为违反学术诚信,学术诚信问题零容忍,学生抄袭或其他 欺诈行为一经证实,将按四川理工学院相关的管理规范要求执行。

11. 课堂规范

1、准时上下课,不得迟到和早退。

- 2、上课期间禁止使用手机
- 3、上课时学生要衣着整齐,专心听讲,认真记笔记
- 4、教师提问学生时,学生必须起立回答,学生遇问题需问教师时,应举手示意, 经教师同意后起立发问。
 - 5、上课期间, 无关人员一律不得讲出教室, 或在课堂内逗留。
 - 6、教室内必须保持整齐洁净
- 7、在教学楼内应保持安静,不得在走廊和教室内高声喧哗以及做有碍上课和自习的活动。
 - 8、同学之间要互相谦让,互相照顾,不得抢占座位。
 - 9、自觉爱护教室内的物品。

12. 课程资源

12.1 教材与参考书

本课程使用教材:

夏清,贾绍义主编,《化工原理》(上册)(第2版),天津大学出版社,天津,2011

参考书:

- 1、 姚玉英主编,《化工原理》(上、下册)(新版),天津大学出版社,天津,1998
- 2、赵汝溥、管国锋、《化工原理》, 化学工业出版社. 北京, 1995
- 3、大连理工大学化工原理教研室编,《化工原理》(上、下册),大连理工大学出版 社,大连,1992
- 4、陈敏恒,丛德滋,方图南等编,《化工原理》(上册)(第二版),化学工业出版社,北京,1999
 - 5、朱家骅,叶世超编,《化工原理》(上册),科学技术出版社,北京,2002
- 6、Warren L. McCabe, Julian C. Smith, Peter Harriott. Unit Operations of Chemical Engineering (Sixth Edition), 化学工业出版社, 北京, 2003
 - 7、姚玉英,《化工原理例题与习题》(第三版),化学工业出版社,北京,2003
- 8、柴成敬,王军,陈常贵等编,《化工原理课程学习指导》,天津大学出版社,天津,2003
 - 9、匡国柱编,《化工原理学习指导》,大连理工大学出版社,大连,2002
 - 10、谭天恩,麦本熙,丁惠华编,《化工原理》(上册),化学工业出版社,北京,

2010

11、姚玉英,陈常贵,柴诚敬编著,《化工原理学习指南——问题与习题解析》,天津大学出版社,天津,2010。

12.2 网络课程资源

- 1、大连理工大学化工原理及实验精品课程: http://hgyl.dlut.edu.cn/
- 2、南京工业大学化工原理精品课程:

http://jpkc-jy.njtech.edu.cn/huagong/index.asp

13. 教学合约

- 13.1 我已经认真阅读了《化工原理》(上册)课程实施大纲,并理解其内容。
- 13.2 我同意遵守课程实施大纲中阐述的标准和期望

14. 其他说明

如果同学们有对本课程实施的意见和建议,欢迎大家提出。